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ABSTRACT. Data with excess zeros are frequently found in practice, and the recommended analysis is to 
use models that adequately address the counting of zero observations. In this study, the Zero Inflated Beta 
Regression Model (BeZI) was used on experimental data to describe the mean incidence of leaf citrus 
canker in orange groves under the influence of genotype and rootstocks of origin. Based on the model, it 
was possible to quantify the odds that a null observation to mean incidence comes from a particular plant 
according to genotype and rootstock, and estimate its expected value according to this combination. Laranja 
Caipira rootstock proved to be the most resistant to leaf citrus canker as well as Limão Cravo proved to be 
the most fragile. The Ipiguá IAC, Arapongas, EEL and Olímpia genotypes have statistically equivalent 
chances. 
Keywords: GAMLSS models, inflated models, odds ratio, Citrus sinensis, Xanthomonas citri subsp. citri. 

Modelo de regressão beta inflacionado de zeros para a incidência de cancro cítrico foliar 
em genótipos de laranja enxertados sobre diferentes porta-enxertos 

RESUMO. Dados com excesso de zeros são encontrados muitas vezes na prática, e a análise recomendada 
é utilizar modelos que suportem adequadamente a contagem de observações nulas. Neste artigo, o Modelo 
de Regressão Beta Inflacionado de Zeros (BeZI) foi aplicado a dados experimentais para descrever a 
incidência média de cancro cítrico foliar em pomares de laranja sob a influência do genótipo e do porta-
enxerto de origem. Com base no modelo, foi possível quantificar as chances de que uma observação nula 
para a incidência média seja proveniente de uma determinada planta, de acordo com o genótipo e o porta-
enxerto, além de estimar o seu valor esperado conforme essa combinação. O porta-enxerto Laranja Caipira 
mostrou ser o mais resistente ao cancro cítrico foliar, assim como o Limão Cravo mostrou ser o mais 
suscetível. Os genótipos Ipiguá IAC, Arapongas, EEL e Olímpia apresentaram chances estatisticamente 
equivalentes. 
Palavras-chave: Modelos GAMLSS, modelos inflacionados, razão de chances, Citrus sinensis, Xanthomonas citri subsp. citri. 

Introduction 

The agronomic framework 

Similar to other agricultural crops, the orange 
cultivation demands management and practices. 
Currently, the various diseases that affect the orange 
groves include citrus canker, caused by Xanthomonas 
citri subsp. citri. (Gonçalves-Zuliani et al., 2016). This 
disease does not have control, the recommendation 
is the elimination of infected plants, however, some 
studies have pointed possible means of control, 
indicating that in the future the disease will be 
controlled (Sauer et al., 2015). Current techniques 
to prevent citrus canker in orange groves suggest the 
use of grafting onto rootstocks resistant to disease 
(Reis et al., 2008). 

Rootstock exerts significant influence on various 
cultural aspects of canopy variety, it is responsible 
for changes in growth, size, production precocity, 
productivity, time of ripening, fruit weight, coloring 
of peel, sugar and acid content, post-harvest 
conservation, drought and cold resistance, as well as 
resistance to pests and diseases (Leite Jr & Santos, 
1988, Schafer, Bastianel, & Dornelles, 2001, Stuchi, 
Donadio, & Sempionato, 2002, Tazima, Neves, 
Yada, & Leite Jr, 2010). 

Choosing a suitable rootstock should take many 
factors into account, and the possibility of 
establishing a resistance criterion to citrus canker for 
canopy variety is an important feature in the 
integrated management or prevention of disease, 
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especially in regions where citrus cankeris endemic 
(Danos, Berger, & Stall, 1984, Agostini, Graham, & 
Timmer, 1985). 

In the state of Paraná, there are few studies on 
the impact of citrus canker on specific genotypes 
under the influence of a rootstock. This study 
evaluated the resistance of Laranja Doce (Citrus 
sinensis (L.) Osbeck) var. Pera genotypes grafted onto 
different rootstocks to the action of the bacterium 
Xanthomonas citri subsp. citri. The modeling was 
performed using the Zero Inflated Beta Regression 
model. 

The statistical framework 

Beta distribution is commonly used to 
understand the variability of a random variable ܻ	supported on an open interval ܫ = (ܽ, ܾ) ⊂ ℝ, 
with ܽ, ܾ ∈ ℝ and ܽ ൏ ܾ. If, in particular, ܻ denotes 
a proportion, then ܽ = 0	and	ܾ = 1, i.e.	ܷ = (0,1) ⊂ℝ. A statistical approach that examines the existence 
and quantify any possible associations between ܻ, 
and the presence of a set of factors ܺ that exert 
influence on their behavior, is the Beta Regression 
Model. 

With extensive application, Beta Regression 
Models have been used to understand specific 
aspects of a multitude of phenomena, such as scores 
in tests conducted on dyslexics and non-dyslexics 
individuals  (Smithson & Verkuilen, 2006), the 
canopy cover rate of trees in forests according to the 
basal area, tree height, local fertility, and others 
factors (Korhonen, Korhonen, Stenberg, Maltamo, 
& Rautiainen, 2007), the selective collection rate in 
some cities, considering socioeconomic, 
demographic factors and others  (Ibáñez, Prades, & 
Simó, 2011), the relationship between trade and 
business cycles  (Mendonça, Silvestre, & Passos, 
2011), and many others areas such as health  
(Moraes, Rocha, & Machado, 2012) or meteorology 
and climatology  (Mullen, Marshall, & McGlynn, 
2013). 

A severe restriction on the use of Beta 
distribution is its support, an open interval. This 
difficulty can be easily overcome with the use of a 
Two-Part Model. Although the model known as 
Zero Inflated Beta Model is relatively recent, the use 
of Inflated Models is well addressed in the literature. 
This research exposes the Zero Inflated Beta Model, 
and uses this theory to model a real agronomy 
database. 

Material and methods 

Leaf citrus canker incidence 

This study come from an experiment  
that used as plant material nine Laranja Doce var. Pera 

genotypes. Each genotype: Arapongas, Bianchi, EEL, 
IAC, IAC 2000, Ipiguá IAC, N58, N59 and Olímpia, 
was grafted onto four rootstocks: Laranja Caipira 
(Citrus sinensis (L.) Osbeck), Limão Cravo (Citrus 
limonia (L.) Osbeck), Tangerina Cleópatra (Citrus 
reshni hort. ex Tanaka) and Tangerina Sunki (Citrus 
sunki (Hayata) hort. ex Tanaka), totaling 36 clones. 

The sampling process consisted of quarterly 
evaluation of ten plants per clone in periods of 2010, 
2011 and 2012. When the plants were about two 
years old, quarterly evaluations began. Four 
branches per plant were randomly sampled for 
technical diagnostics. All cultures received normal 
management for both citrus canker and other 
diseases, throughout the experiment. 

To obtain estimates for leaf citrus canker 
incidence, it was counted the number of infected 
leaves over total number of leaves. This process was 
repeated in five evaluations and, at the end of the 
experiment, the average of the observed incidences 
was calculated, resulting in 360 sampling leaf citrus 
canker mean incidences. ۰۷܈܍	ࣇ), ,ࣆ  distribution (࣌

The Beta distribution is a continuous probability 
distribution usually defined on the open unit 
interval	ܷ = (0,1) ⊂ ℝ, parameterized by two 
parameters,  > 0 and ݍ > 0	and, in this case, 
denoted by	Be	(,  The probability density .(ݍ
function of Be	(,   is the real function in (ݍ
Equation 1: 

 

 (1)

 
where:  > ݍ	,0 > 0	are shape parameters and the symbol Γ	denotes the Gamma function. 

Beta distribution is a very versatile probability 
distribution family, may take a wide variety of forms 
such constant format (uniform distribution, when  = ݍ = 1), symmetrical unimodal or bathtub 
(when  = ݍ ് 1), negative asymmetrical unimodal 
or strictly increasing (when  >  positive ,(ݍ
asymmetric unimodal or strictly decreasing (when  ൏  .(ݍ

The expected value and variance of Be	(,  (ݍ
distribution are expressed, respectively, by  
Equation 2: 
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	and	 (2)

 
In regression analysis is common, and reasonably 

convenient, to model the expected value of the 
response variable, that is, when possible, is it more 
interesting than the adjustment made on a parameter 
that represents the mean of random variable. In the 
case of Be	(,  is	note that the expected value of ܻ ,(ݍ
a function of  and ݍ parameters.  

The idea is to work with a new parameterization 
of the Beta distribution, for this, consider 	ߤ = )/ + so, 0 ,(ݍ ൏ ߤ ൏ 1 and ߪ =  + ߪ ,so ,ݍ > 0, so that the reverse substitutions are uniquely 
determined by	 =  ,so ,ߤߪ > 0	and	ݍ = 1)	ߪ −  ,(ߤ
so	ݍ > 0. Considering the new parameterization, the 
probability density function of	Be	(,  distribution (ݍ
will be denoted by	Be	(ߤ,  and it is described as	(ߪ
Equation 3: 

 

	 (3)

 
where: ߤ ∈ (0,1) is a position parameter,	ߪ > 0 is a scale 
parameter and Γ	denotes the Gamma function. 

Since the support of a random variable with Beta 
distribution is the unit interval ܷ, it is a limitation 
for using this distribution in practical applications 
that have zero observations. One way to overcome 
this difficulty is to use Mixture Models theory 
(specifically, a Two-Part Model) and compose a new 
distribution, here denoted by BeZI	(ߥ, ,ߤ  based ,(ߪ
on two distinct distributions: one to model the zeros 
observations and another to model the observations 
belonging to the ܷ interval. 

The BeZI	(ߥ, ,ߤ  probability density function, is (ߪ
expressed by Equation 4: 

 

 
(4)

 
where: ߤ ∈ (0,1) is a position parameter, ߪ > 0	is a scale 
parameter and	ߥ ∈ [0,1] is a shape parameter. The 
indicator function I[](ݕ)	is a function such 
that	I[](ݕ) = 1, if	ݕ = 0 and I[](ݕ) = 0, if ݕ ് 0. 
The mean and variance of BeZI	(ߥ, ,ߤ  are (ߪ
expressed, respectively, by Equation 5: 

and
	 (5)

,ૅ)	۷܈܍۰  ,ࣆ  regression model (࣌

The idea of modeling the expected value of Be	(,  distribution was already under discussion (ݍ
for some time in the works of Jorgensen (1997), 
Paolino (2001) and Kieschnick and McCullough 
(2003), e.g., however, the regression model exposed 
by Ferrari and Cribari-Neto (2004) became popular 
for formulating more carefully the modeling of the 
expected value in Be	(, ,ߤ)	distribution, based on Be (ݍ  distribution parameterization, and to (ߪ
establish an association with GLM theory, a class 
well described in the literature by Nelder and 
Wedderburn (1972). These, and others works gave 
rise to a number of new studies and approaches, 
such as (Cepeda-Cuervo, 2015).  

To make a more appropriate modeling in the 
context of small samples, the likelihood inference is 
discussed by Ferrari and Pinheiro (2011), whose 
proposed adjusted statistics were more reliable in 
simulation. A discussion about inference in a Beta 
Regression Model with non-constant precision, also 
in small samples cases, can be found in Cribari-Neto 
and Queiroz (2012). 

The diagnostic analysis in Beta Regression 
Models was again discussed by Rocha and Simas 
(2011), Ferrari, Espinheira, and Cribari-Neto 
(2011), Chien (2011) and Anholeto, Sandoval, and 
Botter (2014), with some new influence measures, 
graphical tools and a new residual type for diagnosis. 
Variable selection methodology, in non-constant 
dispersion modeling, was proposed by Zhao, Zhang, 
Lv, and Liu (2014). Furthermore, Latif and Yab 
(2015) expose a way to determine the optimum 
design for an experiment with regression model Be	(ߤ,  .involving a single predictor variable (ߪ

The	BeZI	(ߥ, ,ߤ  regression model received a (ߪ
formal treatment in Ospina and Ferrari (2012). 
Because it is a more recent study, complementary 
theory that naturally comes is not yet so affordable, 
even though the whole development acquired for Be	(ߤ,  regression model is closely associated with (ߪ
it. One can find in the literature a new Likelihood 
Ratio Test for Beta Inflated Models (Pereira & 
Cribari-Neto, 2014b). A discussion of error 
detection in Beta Inflated modeling (Pereira & 
Cribari-Neto, 2014a). Model	definition		

Consider a set of independent and identically 
distributed  random  observations 	ܻ	 = ( ଵܻ, … , ܻ)ୃ,  
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where each component	 ܻ, with	݅ = 1,… , ݊, 
such	 ܻ ∼ BeZI	(ߥ, ,ߤ  ). Keep in mind theߪ
formulation of a Generalized Additive Model for 
Location, Scale and Shape (GAMLSS) exposed in 
Rigby and Stasinopoulos (2005), each parameterߥ, ߤ	andߪof BeZI	(ߥ	, ,ߤ  ) distribution can beߪ
associatedwith the random variable ܻ by a link 
function. The Zero Inflated Beta Regression Model 
can be defined by Equation 6: 

 ܻ ∼ BeZI	(ߥ, ,ߤ 	,(ߪ (6)
 

where: ݅ = 1,… , ݊. Furthermore, the parameters ߥ, ߤ and ߪsatisfy the functional relation ships, according 
Equation 7: 

 ݃ఔ(ߥ) = ఔߟ = ఔߚఔୃݔ ,݃ఓ(ߤ) = ఓߟ = ఓߚఓୃݔ ,݃ఙ(ߪ) = ఙߟ = ఙߚఙୃݔ , (7)

 
where: ߚఔ = ൫ߚଵఔ, … , ఓߚ	,ഌᇲఔ൯ୃߚ = ቀߚଵఓ,… , ഋᇲߚ ఓቁୃand	ߚఙ =൫ߚଵఙ, … , ᇲߚ ఙ൯ୃare parameters vectors with order ܬఔᇱ ఓᇱܬ ,  and	ܬఙᇱ , respectively, associated with the three 
distribution parameters and the vectors	ݔఔ =൫ݔఔଵ, … , ఔഌᇲݔ ൯ୃ, ݔఓ = ቀݔఓଵ, … , ఓഋᇲݔ ቁୃand	ݔఙ =൫ݔఙଵ, … , ఙᇲݔ ൯ୃare vectors with explanatory 
variables observations associated with ,ߥ	ߤ	and	ߪ	to	݅-th individual. Expected	value	and	variance	

Considering the link functions	݃ఔ, ݃ఓ	and	݃ఙ	for 
distribution parameters	ߤ ,ߥ	and ߪ, respectively, the 
expected value and variance of	 ܻ 	are expressed by 
Equations 8 and 9: 

 E( ܻ) = [1 − ߤ[ߥ 	= [1 − ݃ఔି ଵ(ߟఔ)]݃ఓିଵ൫ߟఓ൯= [1− ݃ఔି ଵ(ݔఔୃߚఔ)]݃ఓିଵ(ݔఓୃߚఓ), (8)

 

 

 

 

(9)

The interval estimates for	E	( ܻ) and	Var	( ܻ), are 
conditioned by obtaining the respective standard 
errors, which can be determined with Delta 
Method. 

Results and discussion 

A BeZI	(ߥ, ,ߤ  regression model was adjusted to(ߪ
understand the behavior of the mean incidence of 
leaf citrus canker (denoted by ܻ), influenced by two 
categorical covariates, the rootstock (denoted by PE 
and the categories Laranja Caipira, Limão Cravo, 
Tangerina Cleópatra and Tangerina Sunki) and another 
to represent the genotype (denoted by GE and the 
categories Arapongas, Bianchi, ELL, IAC, IAC 2000, 
Ipiguá IAC, N58, N59 and Olímpia).  Exploratory	analysis	

Figure 1 illustrates the histogram, box plot and 
empirical cumulative probability function, for the 
mean incidence considering each rootstock. The 
highest zero proportion corresponds to rootstock 
Laranja Caipira (74.44%) while the lowest 
corresponds to the rootstock Limão Cravo (10.00%). 
Considering the dispersion of observations, visually, 
the less dispersed one correspond to rootstock 
Laranja Caipira, followed by rootstock Tangerina 
Cleópatra, the two intermediaries in zero proportion 
observations. 

Table 1 presents the summary measures for each 
rootstock, note that the lower mean value 
corresponds to Laranja Caipira rootstock (0.0095), 
also with the lowest standard deviation (0.0230); on 
the other hand, the highest mean corresponds to 
Limão Cravo rootstock (0.0544), also with the highest 
standard deviation (0.0428). 

Table 1. Summary measures for the mean incidence of citrus 
canker leaf, analyzed per plant, taking into account the rootstock 
of origin. 

Rootstock Min. 
Value 

Max. 
Value 

Mean 
Value 

Standard 
Deviation 

Coefficient 
of Variation

Laranja Caipira 0.0000 0.1236 0.0095 0.0230 2.4281 
Tangerina 
Cleópatra  0.0000 0.1794 0.0210 0.0303 1.4435 

Tangerina Sunki 0.0000 0.1872 0.0252 0.0350 1.3900 
Limão Cravo 0.0000 0.1876 0.0544 0.0428 0.7874 
 

In the genotypes cases, the summary for mean 
incidence of measures in each genotype is shown in 
Table 2, it is possible to observe that the lowest 
means correspond to Ipiguá IAC (0.0144) and N59 
(0.0187) genotypes, whose standard deviations are 
among the three lowest, while the highest means are 
observed for EEL (0.0354) and Olímpia (0.0331).  
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Figure 1. Histograms, box plots and empirical cumulative probability functions for the mean incidence of citrus canker leaf per plant 
analyzed taking into account the genotype of origin.   

Table 2. Summary measures for the mean incidence of citrus 
canker leaf, analyzed per plant, taking into account the genotype 
of origin. 

Genotype Minimum 
Value 

Maximum 
Value 

Mean 
Value 

Standard 
Deviation 

Coefficient of 
Variation 

IpiguáIAC 0.0000 0.1062 0.0144 0.0282 1.9567 
N59  0.0000 0.0860 0.0187 0.0257 1.3697 
IAC  0.0000 0.0918 0.0245 0.0249 1.0130 
Arapongas  0.0000 0.1876 0.0283 0.0483 1.7054 
N58  0.0000 0.1390 0.0303 0.0369 1.2151 
Bianchi  0.0000 0.1536 0.0311 0.0367 1.1798 
IAC 2000 0.0000 0.1136 0.0316 0.0305 0.9654 
Olímpia  0.0000 0.1794 0.0331 0.0403 1.2204 
EEL  0.0000 0.1872 0.0354 0.0523 1.4768 
 

Figure 2 shows the histogram, box plot  
and empirical cumulative probability function, for the  

mean incidence considering each genotype. The 
highest zero proportion observations correspond 
to Arapongas and Ipiguá IAC genotypes (60.00 and 
57.50%) while the lowest correspond to IAC and 
IAC 2000 genotypes (22.50% both), however,  
in general, genotypes present proportions similar 
to each other, i.e. the minimum and  
maximum are not so different from the  
others. Also note that, based on box plots, the  
set of observations visually less dispersed  
corresponds to IAC and N59 genotypes, which 
although have low proportions of null 
observations, concentrate their observations very 
close to zero. 
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Adjustment	and	considerations	
Taken as reference the combination Laranja 

Caipira + Ipiguá IAC, the adopted model after the 
selection between candidate models has the 
Equation 10. 

Where the response variable	 ܻ ∈ (0, 1), its 
expected value	ߤ ∈ (0, 1), the mixture parameter ߥ ∈ [0, 1], the precision parameter ߪ > 0	and the 
identity	ߚఙ > 0, the vectors of parameters	ߚఔ ∈ ℝଵଶ 
and	ߚఓ ∈ ℝଵଶ. Furthermore, the categorical variable GE, with	݆ = 1,… , 8, refers to eight genotypes 
compared to the reference combination and the 
categorical variable PE, with	݆ = 1, 2, 3, refers to 

three rootstocks compared to reference 
combination. 

 ܻ ∼ BeZI(ߥ, ,ߤ log(ߪ ൬ 1ߥ − ൰ߥ = ఔߚ +ߚఔ଼
ୀଵ GE +	ߚ(ା଼)ఔଷ

ୀଵ PE
ߤ = ఓߚ +ߚఓ଼

ୀଵ GE +	ߚ(ା଼)ఓଷ
ୀଵ PEߪ = ఙߚ ,

	 (10)

 
The results adjusted for ߥ coefficients of BeZI	(ߥ, ,ߤ   distribution can be observed in (ߪ

Table 3. 
 

 
Figure 2. Histograms, box plots and empirical cumulative probability functions for the mean incidence of citrus canker leaf per plant 
analyzed taking into account the genotype of origin.   
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There is evidence that Arapongas, EEL and Olímpia 
genotypes influence on zero proportion for leaf 
citrus canker mean incidence seems to not differ 
statistically from that influence observed for 
reference combination (Laranja Caipira + Ipiguá 
IAC). On the other hand, estimates indicate that 
influence exerted by the other three rootstocks 
(Limão Cravo, Tangerina Cleópatra and Tangerina 
Sunki) is statistically significant compared to 
reference combination. 

In the case of ߤ and ߪ coefficients, results are in 
Table 4. There are indications that the influence of 
Arapongas, EEL and Olímpia genotypes on the mean 
incidence of leaf citrus canker, in this case, seems 
statistically different from the reference 
combination. Furthermore, only the Limão Cravo 
rootstock differs statistically from reference 
combination. 

Table 3. Point and interval estimates for ߥ	regression coefficients 
of BeZI	(ߥ, ,ߤ 	ఔߚ .distribution (ߪ Estimative CI (95%) 
(Intercept) ߚఔ	 2.24917 (1.34704; 3.15129) 
Arapongas ߚଵఔ	 0.13855 (-0.89352; 1.17061) 
Bianchi ߚଶఔ	 -1.70849 (-2.80083; -0.61615) 
EEL ߚଷఔ	 -0.54300 (-1.56907; 0.48307) 
IAC ߚସఔ	 -2.05454 (-3.18594; -0.92315) 
IAC 2000 ߚହఔ	 -2.05454 (-3.18594; -0.92315) 
N58 ߚఔ	 -1.09784 (-2.14350; -0.05218) 
N59 ߚఔ	 -1.09784 (-2.14350; -0.05218) 
Olímpia ଼ߚఔ	 -0.95581 (-1.99441; 0.08280) 
Limão Cravo ߚଽఔ	 -3.63153 (-4.53108; -2.73199) 
Tangerina Cleópatra ߚଵఔ -1.77199 (-2.46022; -1.08376) 
Tangerina Sunki ߚଵଵఔ -1.93578 (-2.63218; -1.23938) 
 

Table 4. Point and interval estimates for	ߤ	and	ߪ	regression 
coefficients of BeZI	(ߥ, ,ߤ  .distribution (ߪ

 
Coefficients ߤ Coefficients ߚ ߪఓ Estimative CI (95%) ߚఙ	 Estimative CI (95%)

(Intercept)  ߚఓ 0.03057 (0.01601; 
	ఙߚ (0.04514 37.0943 (37.0797; 

37.1088)

Arapongas ߚଵఓ 0.02978 (0.00865; 
0.05092)    

Bianchi  ߚଶఓ 0.01205 (-0.00270; 
0.02680)    

EEL  ߚଷఓ 0.02351 (0.00555; 
0.04147)    

IAC  ߚସఓ 0.00602 (-0.00781; 
0.01984)    

IAC 2000  ߚହఓ 0.01170 (-0.00282; 
0.02623)    

N58  ߚఓ 0.01459 (-0.00130; 
0.03048)    

N59  ߚఓ 0.00124 (-0.01276; 
0.01524)    

Olímpia  ଼ߚఓ 0.02182 (0.00493; 
0.03872)    

Limão Cravo  ߚଽఓ 0.01516 (0.00169; 
0.02862)    

Tangerina Cleópatra  ߚଵ -0.00730 (-0.01988; 
0.00528)    

Tangerina Sunki  ߚଵଵ -0.00645 (-0.01922; 
0.00631)    

 

The model suitability evaluation, if positive, 
allows drawing conclusions based on the 
adjustment. This assessment should be performed 
by diagnostic criteria, such as graphical analysis of 
residuals from the optimization process. 

The standardized residuals for discrete and 
continuous components are observed in  
Figure 3a and b, respectively. For discrete 
component, observations 11, 15, 21, 22, 66, 272, 273 
and 274 are further away from the other 
observations. In continuous component, distance 
between observations is not so much expressive. 

The withdrawal of observations one by one, and 
altogether, did not result insignificant differences for 
estimates or different interpretations of the obtained 
model in the presence of all observations, in this way 
we decided to keep all observations. 

Figure 4 shows the simulated envelopes to assess 
the adequacy of the standardized (a), randomized (b) 
and weighted (c) residuals. In any graphics, very few 
observations fall outside the confidence bands, 
which strengthens the assumption that the Zero 
Inflated Beta Regression model accommodates the 
inherent variability of the response variable. 

Finally, in Figure 5 are exposed worm plots built 
with a model individually for each component, 
discrete (a) and continuous (b). None of the 
observations lies beyond the confidence bands, 
indicating a good fit. 

Based on graphical analysis, it is assumed that the 
model has the ability to briefly represent the 
observed reality in the experiment. A pseudo-ܴ 
equal to 0.49989, with a confidence interval 
(0.41813; 0.57361), allows us to understand that the 
adjustment can account for approximately 49.99% of 
the variability of the studied incidence. 

Since the graphical analysis indicate good fit for 
the proposed model, it is possible to interpret the 
results and make conclusions based on modeling. 
Estimates obtained for ߥ coefficients, shown in 
Table 3, allow to compute the odds compared to 
observe a null mean incidence of leaf citrus canker 
between each genotype or rootstock with the 
reference combination. The point and interval 
estimates can be found in Table 5. 

Considering a chance equals one for an 
observation of reference combination (and also of 
genotype and/or rootstock classified as statistically 
equivalent) be equals zero, Figure 6 illustrates a 
color matrix for estimated chance of a particular 
plant presents a null mean incidence of leaf citrus 
canker, compared to the reference combination 
genotype + rootstock. 
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(a) (b) 
Figure 3. Discrete component (a): Standardized residuals versus Adjusted Values for	ߥ. Continuous component (b): Standardized 
residuals versus Adjusted Values for	ߤ. 

 
Figure 4. Simulated envelopes based on standardized (a), randomized (b) and weighted (c) residuals, resulting from the regression model BeZI	(ν, μ, σ)	adjustment. 

(a) (b) 
Figure 5. Worm plots built on the model set individually for the discrete (a) and continuous (b) components. 

Clearly, Laranja Caipira rootstock presents a 
resistance to leaf citrus canker superior to the others. 
The chances to observe a null mean incidence with 
Limão Cravo, Tangerina Cleópatra and Tangerina Sunki 

rootstocks are, respectively, 0.0265, 0.1700 and 
0.1443 times the chance of Laranja Caipira rootstock. 
Based on these results, Limão Cravo rootstock has 
the highest susceptibility to leaf citrus canker. 
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Table 5. Odds ratios estimated for BeZI	(ߥ, ,ߤ  .model (ߪ
Comparisons between the chance to present a zero mean 
incidence of different rootstocks and genotypes compared to the 
combination of rootstock Laranja Caipira and genotype Ipiguá 
IAC. 

OR CI (95%) 
Arapongas 1.14860 (0.40921; 3.22397) 
Bianchi 0.18114 (0.06076; 0.54002) 
EEL 0.58100 (0.20824; 1.62104) 
IAC 0.12815 (0.04134; 0.39727) 
IAC 2000 0.12815 (0.04134; 0.39727) 
N58 0.33359 (0.11724; 0.94916) 
N59 0.33359 (0.11724; 0.94916) 
Olímpia 0.38450 (0.13609; 1.08632) 
Limão Cravo 0.02648 (0.01077; 0.06509) 
Tangerina Cleópatra 0.16999 (0.08542; 0.33832) 
Tangerina Sunki 0.14431 (0.07192; 0.28956) 
 

Regarding genotypes and the resistance to leaf 
citrus canker, four genotypes are statistically 
equivalent, Ipiguá IAC (reference) Arapongas, EEL 
and Olímpia. The chance that a null mean 
incidence is found in individuals of N58 and N59 
genotypes is indistinguishable from each other 
(and equal to 0.3336 times the chance of Ipiguá 
IAC genotype), as well as the IAC and  IAC 2000 
(equivalent to 0.1282 times the chance of Ipiguá 
IAC genotype). Moreover, the chance of Bianchi 
genotype presents a null mean incidence is equal 
to 0.1811 times the chance of Ipiguá IAC 
genotype. 

Since the observed mean incidence is different 
from zero, that is, considering that the plant is 
infected, the results that include this situation are 

listed in Table 4 and based on them it can be 
concluded that: 

• Once the plant is infected, Bianchi, IAC, 
IAC 2000, N58 and N59 genotypes are 
indistinguishable from reference combination, as 
well Tangerina Cleópatra and Tangerina Sunki 
rootstock;  

• Arapongas, EEL and Olímpia genotypes are 
statistically different from reference combination, 
but, note that the contribution of the estimated 
mean incidence of leaf citrus canker of each is 
positive in any case, indicating that the estimated 
mean incidence is higher in these genotypes;  

• Only Limão Cravo rootstock is statistically 
different from the reference combination, and also 
contributes to increase the mean incidence of leaf 
citrus canker.  

In Figure 7, the color matrix is showed in 
accordance with each combination rootstock + 
genotype for mean incidence of leaf citrus canker 
estimated by the model. The combination Limão 
Cravo + Arapongas is more susceptible to the disease, 
with an expected mean incidence equal to 6.04%, 
followed by combinations Limão Cravo + EEL 
(5.54%) and Limão Cravo + Olímpia (5.40%). On the 
other hand, the reference combination had the 
highest resistance, with expected mean incidence 
equal to 0.29%, followed by Laranja Caipira + 
Olímpia (0.50%) and Laranja Caipira + N58 or N59 
(both 0.73%). 

 

 
Figure 6. Color matrix for estimates odds ratios, based on the regression model for the occurrence of a null mean incidence according to 
genotype and rootstock.   
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Figure 7. Color matrix for estimates of expected values for the mean incidence of citrus canker leaf, adjusted based on the regression 
model according to genotype and rootstock.   

Conclusion 

The BeZI	(ߥ, ,ߤ  regression model was	(ߪ
adequate to represent the mean incidence of leaf 
citrus canker. The approach based on a regression 
model allows to isolate and quantify influence 
effects on the response variable. 

The discrete component enabled to understand 
the odds of observing a zero mean incidence and 
quantitatively explained that the Laranja Caipira 
rootstock is the most resistant to leaf citrus canker as 
well Limão Cravo is more susceptible to the same 
disease. In addition, the Ipiguá IAC, Arapongas, EEL 
and Olímpia genotypes have odds of observing a zero 
mean incidence statistically equivalent. 

The combination between the discrete and 
continuous components allowed to quantify the 
expected mean incidence and demonstrated that 
Limão Cravo rootstock and Arapongas, EEL and 
Olímpia genotype stend to positively increase the 
expected mean incidence. The highlight for lowest 
incidence expected average is the reference 
combination. 
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