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ABSTRACT. There are several techniques available for longitudinal data analysis. In the last decade, 
much emphasis has been placed on generalized mixed models. The present work is dedicated to give an 
overview of this technique, with emphasis on the formulation, interpretation and inference of the model. 
The guidelines are given for statistical practice in general. This form of modeling was applied to data from 
an experiment to evaluate the resistance of 12 varieties of sweet orange to citrus canker. The experiment 
consisted of provoking lesions on the leaves of orange trees and monitoring the diameter of the lesion 
over time. The adjustment of the observed data to the proposed model provided reliable results, since the 
assumptions necessary for the validity of the model were satisfied. Therefore, it can be said that this 
methodology is adequate to model the data, since it allowed the detection of the varieties more 
susceptible to citrus canker. 
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Introduction 

The study of longitudinal data or repeated measurements involves the performance of two or more 
observations in the same experimental units. This type of study may present a hierarchical structure, since 
repeated measures are nested within the individual. Therefore, it can be assumed that observations between 
individuals are independent and that nesting in them has dependence correlated with errors. 

Longitudinal studies are more appropriate for investigating individual changes over time and for studies 
of age effects and other factors influenced by the passage of time (Molenberghs & Verbeke, 2001). 

In longitudinal data analysis, correct inferences can be obtained only by taking into account the 
correlation between the repeated measures in each subject, which also depends on the time interval 
between these measures (Molenberghs & Verbeke, 2001).  

One of the main statistical models for analyzing longitudinal data capable of incorporating the 
dependency and correlation structure of the errors are the mixed models (Wallace & Green, 2002). However, 
in order to resolve the non-independence of the data, it is necessary to stipulate correctly its fixed and 
random effects (Winter, 2013). 

A mixed model is an extension of a linear model. This model is divided into two parts, one of fixed effects 
(already present in the linear models) and another of random effects, where the latter has the function of 
identifying the variation between the individuals of the problem in question. In this sense while the fixed 
coefficients are constant in all individuals, the random ones vary for each one, which in turn incorporates 
the differences between them. Therefore, this causes the model to have two parametrization components, 
one intra-individual and one between-individual. 

A random-effect variable is one that in the study in question represents only a fraction of all levels that 
this variable can assume, or where the effect of each individual level is not of interest in the results of the 
study, but it is desired to know about its variability in the general population (Littell, 2002). In general, the 
type of effect that each variable will assume depends, in part, on the research objective. 

The residual errors are a random-effect variable in every experiment, in addition, certain aspects in 
the experiment and data collection create random effects for the model (Schabenberger & Pierce, 
2001). 
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According to Littell, Pendergast, and Natarajan (2000), the mixed models were developed by geneticists 
to assess the genetic potential of bulls. With the advancement of computational technology, the application 
of such models has spread through several areas of research. 

The purpose of this article is to provide a discussion on mixed generalized linear models, summarizing 
from a current perspective its formulation, interpretation and implementation in research and new 
developments, especially in the agricultural sciences. 

Material and methods 

Material 

The methods discussed will be applied in the evaluation of the resistance of 12 types of orange genotypes 
(Citrus sinensis) to the bacteria Xanthomonas citri subsp. citri, in vegetation house/greenhouse, by measuring the 
diameter of the lesions, Valência, Valência 2, Valência Puka, Valência Paloma, Perâ Oriçanga, Perâ Irradiada, 
Perâ Itapetininga, Perâ Maringá, Perâ IAC, Sanguine Mombuca, Hamlin and Precoce Oriçanga. 

The samples were obtained from the inoculation of the bacteria in 6 leaves per plant, totaling 5 plants 
per variety, which received periodic fertilizations of N, P, K. The diameter of the lesions provoked was 
evaluated at 18, 24, 33, 39, 46, 61, 68, and 75 days after inoculation (DAI), where the presence of yellow halo 
around necrosis was disregarded. The experiment was carried out from June to August 2016. For the 
measurement of the diameters, a pachymeter was used, using three different grafts, Swingle, Sunki and 
Lemon clove/Rangpur Lime. 

The data set is of the longitudinal type, consisting of a total of 2880 observations containing 4 variables, 
these being the varieties of oranges used in the experiment (variety), the number of plants in each variety 
(leaf), the days after inoculation (DAI) and the diameter of the lesion (Diam), the latter being the response 
variable, which is of the continuous type, measured in centimeters. 

Generalized Linear Mixed Model (GLMM) 

A generalized mixed model is a statistical model that seeks to describe the behavior of a random variable 
in relation to one or more explanatory variables, where these can be both of fixed and random effects. The 
great difference of these models in relation to a mixed linear model is that in the generalized ones the 
response variable does not necessarily have to be associated with the normal distribution, what widens the 
scope of such models. 

To specify a generalized mixed model, the response variable conditioned to random effects ሺݕ ∨ ܾሻ must 
follow a distribution belonging to the exponential family, according Equation 1 and 2: ݕ ∨ ܾ ሺ݂|ሻሺݕ|݅ ∨ ሻ (1)ߠ

ሺ݂|ሻሺݕ|ߠሻ = ܾሺݕሻ݁ݔሾߟሺߠሻ்ܶሺݕሻ − ܽሺߠሻሿ (2)

Typically, is desired to relate the distribution parameters to the predictors of the model, since this is make a 
transformation of the mean ߤ, so that they relate to such predictors, according Equation 3 and 4: Eሺyi|bሻ=μi, (3)݃൫ܧሺݕ|ܾሻ൯ = ݃ሺߤሻ = ߟ = ܺߚ + ܼܾ, (4)

where: 
g(.) is a known function, called link function, responsible for relating the mean of yi to the linear 

predictors, Xi is the i-th line of the fixed-effect matrix, ߚ is the vector of the fixed-effect parameters, Zi is 
the i-th line of the random-effect model matrix, and b is the vector of random effects assuming that they are 
mutually independent, normally distributed with vector means equal to 0 and variance matrix D. 

As can be noticed in GLMMs, as in mixed linear models, there are two types of random effects. 
Simply put, if a random effect is an element of b, it is taken as an effect D, that is, in such a model the 
covariance structure of matrix D is being modeled, otherwise the covariance structure of the errors R is 
being modeled. Non-effect D models are also known as marginal models. The same model can contain 
both types of random effects, when this occurs the covariance matrix of Y is written as: cov (Y) = V = 
ZDZ + R (SAS Institute, 2008). 
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The variance of ݕ ∨ ܾ is given by ܸܽݎሺݕ ∨ ܾሻ = ߶ଶݒሺߤሻ, where v is a known variance function given by 
the distribution of yi and ߶ is the scale parameter of the distribution, which must be estimated. 

In this context the mean, variance, covariance and correlation can be written as Equation 5 at 7: ܧሾݕሿ = ሾ݃ିଵሺܧ ܺߚ + ܼܾሻሿ (5)ܸܽݎሺݕሻ = ൫݃ିଵሺݎܸܽ ܺߚ + ܼܾሻ൯ + ൫݃ିଵሺݒଶ߶ൣܧ ܺߚ + ܼܾሻ൯൧ݒܥ൫ݕ, ൯ݕ = ݒܿ ቀ݃ିଵሺ ܺߚ + ܼܾሻ, ݃ିଵ൫ ܺߚ + ܼܾ൯ቁ (6)

,ݕ൫ݎݎܥ ൯ݕ = ݒܿ ቀ݃ିଵሺ ܺߚ + ܼܾሻ, ݃ିଵ൫ ܺߚ + ܼܾ൯ቁඥܸܽݎሺݕሻටܸܽݎ൫ݕ൯ . (7)

In generalized mixed models, such as the linear ones, the parameters of fixed effects ߚ, the variances and 
covariance of the random effects D and R are estimated. However, unlike linear models in GLMMs, the likelihood 
function does not usually have a closed-form expression, which generates integrals that cannot be solved 
analytically. Therefore, several approaches can be used in order to overcome such difficulties. One is done by 
maximizing the penalized likelihood function lp (Rigby & Stasinopoulos, 2005), given by Equation 8: 

݈ሺߚ, ܾሻ = ݈ − 12  ܾఓ்൫ܦఓିଵ൯ܾఓ + ܾఙ்ሺܦఙିଵሻܾఙே
ୀଵ (8)

where: ݈ = ∑ ݈݊൫݂ሺݕ ∨ ,ߤ ଶሻ൯ୀଵߪ  is the log-likelihood function of the data, b are the parameters of random 
effects and Di

-1 is the inverse matrix of Di, the matrix of diagonal blocks (q x q) of the variances and 
covariances of the random effects bi. 

Log-normal distribution 

The log-normal distribution is an appropriate distribution for continuous, positive and asymmetric data, 
whose asymmetry occurs frequently when the means are small, the variances are large and the values are 
not negative (Limpert, Stahel, & Abbt, 2001), where the logarithm of the random variable is normally 
distributed. The probability density function can be defined according to Equation 9 (Stasinopoulos, Rigby, 
& Akantziliotou, 2008): ݂ሺߤ|ݕ, ଶሻߪ = ଶߪߨ2√1 ݕ1 ݔ݁ ቊ−ሺ݈݃ሺݕሻ − ଶߪሻଶ2ߤ ቋ, (9)

where: 

for y > 0, where ߤ > 0 and ߪ > ሺܻሻܧ .0 = ߱భమ݁ఓ and ܸܽݎሺܻሻ = ߱ሺ߱ − 1ሻ݁ଶఓ, with ߱ =  ଶሻ, whoseߪሺݔ݁
support is given by ݑݏሺ݂ሻ = ݔ ∈ ሺ0, ∞ሻ. 

Gamma distribution 

The Gamma distribution is an appropriate distribution for continuous, positive and asymmetric data, 
where several distributions such as exponential and chi-square are particular cases of it. When 
parameterized as a function of its mean ߤ, its probability density function denoted by ܣܩሺߤ,  ଶሻ can beߪ
defined as Equation 10: 

݂ሺߤ|ݕ, ଶሻߪ = 1ሺߪଶߤሻ ଵఙమ ⋅ ቀݕ ଵఙమିଵቁ݁ି௬ ൫ఙమఓ൯⁄߁ሺ1 ⁄ଶߪ ሻ , (10)

where: 
for y > 0, where ߤ > 0 and ߪ > ሺܻሻܧ .0 = ሺܻሻݎܸܽ and ߤ =  ଶ. Such reparameterization is presented byߤଶߪ

Johnson, Kotz, and Balakrishnan (1995), obtained by determining ߪଶ = ଵఈ and ߤ =  is the ߤ ,Additionally .ߚߙ
location parameter, where as ߪ is the scale parameter. The support of the function is given by ݑݏሺ݂ሻ = ݔ ∈ሺ0, ∞ሻ. Also, for any positive real ߁ ,ߙሺߙሻ is defined as: ߁ሺߙሻ =  ஶݔఈିଵ݁ି௫݀ݔ . 
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Generalized mixed model for gamma and log-normal distributions 

In a context of repeated measures, a mixed-gamma and log-normal model with normal random effects is 
defined, with Y denoting random and independent observations, where ܻ = ൫ ܻଵ, … , ܻ൯, with i = 1, …, N 
observations and j = 1, …, ni moments. Being two random effects, ܾఓ and ܾఙమ, which as seen are 
independent and with Normal distribution with vector means equal to 0 and covariance matrices ܦఓ and ܦఙଶ. 
Therefore, the regression model can be written as Equation 11 at 13 (Wallace & Green, 2002): 

ܻ ∨ ܾఓܾఙమ ∼ ,ߤ൫ܣܩ ଶߪ ൯, (11)

ܻ ∨ ܾఓܾఙమ ∼ ݈݊൫ߤ, ଶߪ ൯, (12)݅ = 1, … , ܰ, ݆ = 1, … , ݊ ܾఓ ∼ ܰ൫0, ,ఓ൯ܦ ܾఙమܰሺ0, ,ఙమሻܦ (13)

The parameters ߤ and ߪ satisfies the relations Equation 14 and 15: ݃ఓ = ఓߟ = ఓ்ݔ ఓߚ + ܼఓ் ܾఓ (14)݃ఙమ = ఙమߟ = ఙమ்ݔ ఙమߚ + ܼఙమ் ܾఙమ (15)

where: 
ఓݔ • = ቀݔఓଵ, … , ఙమݔ ఓഋቁ andݔ = ቀݔఙమଵ, … , ఙమమݔ ቁ are matrices with the observations of the 

predictor variables, associated with the i-th individual in the j-th moment of the fixed effects of ߤ and ߪଶ; 

• ܼఓ = ቀܼଵఓ,…,ೕഋഋቁ்
 and ܼఙమ = ቆܼଵఙమ,…,ೕమమ ቇ்

are matrices with the observations of the 

predictor variables, associated with the i-th individual in the j-th moment of the random effects of ߤ and ߪଶ; 

ఓߚ • = ቀߚ, … , ሺିଵሻഋఓቁ்ߚ
 and ߚ൫ఙమ൯ = ቀߚ, … , ሺିଵሻమఙమቁ்ߚ

 are vectors of the fixed effects associated with 

each of the parameters of the distributions ߤ and ߪଶ; 

• ܾఓ = ቀܾଵఓ, … , ܾഋఓቁ்
 and ܾఙమ = ቀܾଵఙమ, … , ܾమఙమቁ்

 are vectors of the random effects associated 

with the i-th individual in the j-th moment of each of the parameters of the distributions ߤ and ߪଶ ; 
ఓݍ ఙమ are matricesܦ ఓ andܦ • × ఙమݍ ,ఓݍ ×  ఓߛ ఙమ of diagonal blocks, which represent the variance ofݍ

and ߛఙమ, respectively. 

Applications 

The log-normal ݈݊ሺߤ, ,ߤሺܣܩ ଶሻ and gamma distributionsߪ  ଶሻ were used to analyze the database obtainedߪ
by Franco (2016) with the objective of evaluating the resistance of 12 varieties of sweet orange. 

The data set contains 2880 observations of the mean diameter of the lesions (12 Genotypes × 8 Days × 60 
Leaves × 6 Repetitions), considering all co-variables and the effect of time. To obtain the parameter 
estimates, it was used the software R with the package gamlss, which allows the expansion of the systematic 
part of the model, allowing to model not only the average parameter, but also other parameters of the 
distribution. The penalized likelihood function lp (8) was used to estimate the parameters of the models. 

This function may not have an analytical solution, or if it exists, is very difficult to obtain. To overcome 
this difficulty, three algorithms have been implemented in the package gamlss to obtain the estimators, RS, 
CG and an algorithm called Mixed (Stasinopoulos et al., 2008). In the present work we used only the 
algorithm RS, because for many probability functions, whose expected values of the second-order derivative 
matrix of the likelihood function are zeros, except for the main diagonal, RS is used because it is simpler, in 
addition, this algorithm is faster for large data set, while the CG is more suitable for distributions whose 
parameters are highly correlated. 

Description of basic statistics 

This assay contains 2880 observations of the average diameter of the lesions (12 varieties × 8 days × 60 
leaves × 6 repetitions), considering all covariates and time effect. 

Table 1 presents a summary of the variable response of the diameter of the lesions in relation to each 
variety. 
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From Table 1 it can be seen that the means of the varieties vary relatively greatly, ranging from 1.71 cm 
for the variety Valencia to 2.45 cm for the variety Pera Ori, with standard deviations equal to 0.25 and 0.47 
cm, respectively. In addition, a great variability is observed for the maximum and minimum values for each 
variety. It is also noted that the values of the coefficients of variation vary from 0.13 to 0.19, representing 
how much, on average, the deviations reach the value of the sample mean. 

Figure 1 presents the box-plot for the behavior of the diameter size of the response variable by variety 
type. 

From Figure 1 apparently the Irradiada and the two species of Valencia have lower average levels of 
diameter size in relation to the other varieties, whereas the PeraOri. has the highest average level. The other 
varieties have seemingly close average levels. There are no candidate measures for outliers. 

Figure 2 shows the average profiles of the evaluated varieties. It is noted that, over time, apparently, the 
diameter of the lesion increases in all varieties, in addition, it is noted again that the two varieties of 
Valencia and Irradiada have the smallest measurements for this, and PeraOri, the largest. No significant 
major decays are observed over time, as observed in the first assay. 

Adjustment 

In the adjustment of the generalized mixed models based on the log-normal and gamma distributions we 
attempted to analyze the behavior of citrus canker in sweet orange varieties in order to analyze the 
relationship between the variable Diameter of the Lesion and the possible factors of influence, variety and 
days after inoculation, with these belonging to the fixed part of the model and the leaves belonging to the 
random part. 

The models were adjusted in response variable yijk, i = 1, 2, …, 12 (number of varieties), j = 1, 2, …, 8 (days 
after inoculation), k = 1, 2, …, 60 (number of leaves). The selection of the model was based on the Akaike 
Information Criterion (AIC), Global Deviance (GD) and Schwarz Bayesian Criterion (BIC) (Rigby & 
Stasinopoulos, 2010). The adjusted models are described in Table 2. 

In such models ߙ represents the effects due to the i-th variety, ߠ the effects due to the j-th day after 
inoculation, uk is the effect of the random part on the k-th leaf. 

Table 1. Statistical summary of the diameters of the lesions of citrus canker for each of the12 varieties. 

No. Varieties N Mean Standard Deviation Min. Max. Coef. of Var. 
1 PeraOri 240 2.45 0.47 1.61 3.48 0.19 
2 Valen 240 1.71 0.25 1.13 2.23 0.15 
3 PrecOri 240 2.31 0.43 1.73 3.13 0.19 
4 Sanguine 240 1.94 0.25 1.38 2.50 0.13 
5 Paloma 240 2.02 0.32 1.38 2.76 0.16 
6 PeraIAC 240 2.11 0.34 1.42 2.82 0.16 
7 Puka 240 1.99 0.29 1.35 2.55 0.15 
8 VALEN 240 1.80 0.24 1.21 2.37 0.13 
9 Itapetinig 240 2.32 0.43 1.65 3.23 0.18 

10 PeraMga 240 2.16 0.34 1.50 2.99 0.16 
11 Hamlin 240 2.25 0.43 1.45 3.17 0.19 
12 Irradiada 240 1.84 0.24 1.30 2.39 0.13 

 

 

Figure 1. Box-plot of the data by variety for 2880 observations. 
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The values of all the decision measures of each model are presented in Table 3. 
Through such decision measures and the GAIC stepwise algorithm (Stasinopoulos & Rigby, 2007), 

implemented in the Gamlss package, the models LN3 and GA3 were chosen as the best models for the Log- 
Normal and Gamma distributions, since among those that best explain the data, these are the most 
parsimonious. 

The analysis of randomized quantile residuals are presented in Figure 3 and 5) for the Log-Normal and 
Gamma models (Dunn & Smyth, 1996). 

Figure 3a and b, of the adjusted values vs residual quantiles, show that the residuals are distributed in a 
randomly around zero, which shows no violation of homoscedasticity. Figure 3c and d, of the theoretical 
quantiles vs sample quantiles, indicate that the residual quantiles follow a standard normal distribution, 
which is a requirement for proper adjustment. 

In the adjustment of such model, the logarithmic function was used as the link function for the Log-
Normal, as well for the Gamma model. In Table 4, the fixed-parameter estimates of the Log-normal and 
Gamma models are presented. 

The results presented in Table 4 show how much the diameter of the lesions caused by Xanthomonas 
varies in average in relation to the Hamlin variety, and how much the diameter of the lesions varies in 
average with respect to the time compared to day 18. It was observed that the two varieties of Valencia 
and Irradiada were the ones that presented the lowest average diameter growth over time, while Perâ 
Oriçanga was the one with the largest diameter, followed by Itapetinig and Precoce Oriçanga. For the 
days after inoculation, it is observed that over time the diameter tends to increase, where day 75 
presented the largest diameter measurements. These results confirmed what the previous descriptive 
analysis showed. 

Table 2. Models proposed for Log-normal and Gamma distribution. 

No. Log-normal Gamma IDModel 
1 LN0 GA0 η = β0 
2 LN1 GA1 ηi = β0 + αiVariety 
3 LN2 GA2 ηij = β0 + αiVariety + θjDAI 
4 LN3 GA3 ηijk = β0 + αiVariety + θjDAI + u0k 
5  GA4 ηijk = β0 + αiVariety + θjDAI + u1kVariety 

Table 3. Measures of AIC, DG and BIC for Log-normal and Gamma models. 

Distribution No. Model AIC GD BIC 

Log-normal 

1 LN0 2758.685 2754.685 2770.616 
2 LN1 1751.555 1725.555 1829.107 
3 LN2 −3848.887 −3888.887 −3729.577 
4 LN3 −3917.803 −4036.911 −3562.531 

Gamma 

1 GA0 2820.178 2816.178 2832.109 
2 GA1 1768.072 1742.072 1845.624 
3 GA2 −3845.892 −3885.892 −3726.581 
4 GA3 −3913.806 −4032.41 −3560.038 
5 GA4 −3937.298 −4020.624 −3688.754 

 

 
Figure 2. Average profile for each variety over time. 
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Figure 3. (a), (b) Adjusted Values vs Residual Quantiles for Log-Normal and Gamma models; (c), (d) Theoretical Quantiles vs Sample 
Quantiles for Log-Normal and Gamma models. 

Table 4. Estimates of Log-Normal and Gamma models parameters for ߤ. 
a) Log-normal model 

Variable Parameter Estimate Standard Error T value Pr (> |t|) 
Intercept ߚ 0.580 0.005 115.920 < 2e-16 
Irradiada ߙଵ -0.194 0.006 -35.232 < 2e-16 
Itapetinig ߙଶ 0.027 0.005 5.263 1.52e-07 

Paloma ߙଷ -0.104 0.005 -22.867 < 2e-16 
PeraIAC ߙସ -0.061 0.006 -13.559 < 2e-16 
PeraMga ߙହ -0.037 0.005 -7.611 3.72e-14 
PeraOri ߙ 0.084 0.005 16.940 < 2e-16 
PrecOri ߙ 0.022 0.005 4.387 1.19e-05 

Puka 2 > 24.558- 0.005 0.116- ଼ߙe-16 
Sanguine ߙଽ -0.139 0.006 -25.456 < 2e-16 

Valen ߙଵ -0.266 0.006 -45.835 < 2e-16 
VALEN2 ߙଵଵ -0.214 0.006 -36.443 < 2e-16 
DAI 24 ߠଵ 0.066 0.005 14.154 < 2e-16 
DAI 33 ߠଶ 0.112 0.005 24.102 < 2e-16 
DAI 39 ߠଷ 0.161 0.004 36.570 < 2e-16 
DAI 46 ߠସ 0.220 0.004 50.508 < 2e-16 
DAI 61 ߠହ 0.320 0.005 68.757 < 2e-16 
DAI 68 ߠ 0.400 0.005 83.994 < 2e-16 
DAI 75 ߠ 0.439 0.005 90.106 < 2e-16 

b) Gamma model 
Variable Parameter Estimate Standard Error T value Pr (> |t|) 
Intercept ߚ 0.479 0.017 28.973 < 2e-16 
Irradiada ߙଵ -0.294 0.018 -16.516 < 2e-16 
Itapetinig ߙଶ 0.027 0.016 1.738 0.0823 

Paloma ߙଷ -0.027 0.016 -1.723 0.0849 
PeraIAC ߙସ -0.034 0.015 -2.296 0.0217 
PeraMga ߙହ -0.022 0.015 -1.411 0.1585 
PeraOri ߙ 0.064 0.016 3.909 9.47e-05 
PrecOri ߙ 0.010 0.015 0.680 0.4964 

Puka 1.10 4.404- 0.015 0.067- ଼ߙe-05 
Sanguine ߙଽ -0.142 0.016 -8.957 <2e-16 

Valen ߙଵ -0.341 0.018 -19.395 <2e-16 
VALEN2 ߙଵଵ -0.345 0.018 -19.521 < 2e-16 
DAI 24 ߠଵ 0.112 0.015 7.528 < 2e-16 
DAI 33 ߠଶ 0.29303 0.016 18.328 < 2e-16 
DAI 39 ߠଷ 0.25854 0.015 17.233 < 2e-16 
DAI 46 ߠସ 0.26140 0.015 17.856 < 2e-16 
DAI 61 ߠହ 0.42012 0.016 26.313 < 2e-16 
DAI 68 ߠ 0.53002 0.017 31.719 < 2e-16 
DAI 75 ߠ 0.47733 0.016 29.501 < 2e-16 
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In Table 5 the estimates of variances and covariances of the random part of the Log-Normal and Gamma 
models are presented for the parameter ߤ. 

The variance estimates presented in Table 5, represent how much of the variance presented in the 
measurement of the diameter is due to the leaves and how much of the variance cannot be explained by the 
model (Residual). 

The models Log-Normal and Gamma present Nagelkerke R2 values equal to 0.9157485 and 0.9175203, 
respectively, that is, such models account for just over 90% of the variability of the diameter of the lesion 
(Nagelkerke, 1991). 

Figure 4 shows the scatter plots with equality line and the Bland Altman plot for the Log-normal and 
Gama models. 

In Figure 4a and b the values measured for the diameter are green and the values adjusted by the models 
are in red, in such graphs it is expected that such points will be equal measures, overlapping the blue line as 
much as possible, which is actually occurring. In Figure 4c and d a good adjustment is again noted, the line 
of the mean of the differences being very close to 0 and having 95% of the differences within the confidence 
intervals. In addition, the scales for the differences are close to 0. 

Table 5. Estimates of the variances of the random part (leaf) for the Log-normal and Gamma ߤ model. 

Distribution Variable Parameter Variance SD 

Log-normal 
Leaf ݑ 0.000187 0.01367 

Residual ݁ 0.003536 0.05946 

Gamma 
Leaf ݑ 0.000184 0.01356 

Residual ݁ 0.003549 0.05957 
 

 

 

Figure 4. Scatter plots with equality line and Bland Altman plots for log-normal and gamma models. 

Discussion 

In this study, the methodology of mixed generalized linear models for random variables with log-normal 
and gamma distributions was discussed. These models were applied to data whose responses showed 
adherence to such distributions. The link between the predictors and the mean of the response variable was 
made by the logarithmic function. Generalized linear mixed models allow us to introduce a source of 
dependence that is not taken into account in the usual regression models. This dependence is quantified by 
the correlation between observations that occurs for data observed over time. The introduction of random-
effect factors into the model allows this correlation to be modeled (McCulloch, Searle, & Neuhaus, 2001). In 
this way, the model will present a better fit, since it will be able to capture the variability within the subjects 
whose measurements were performed over time. These models were adequate to describe the behavior of 
citrus canker evaluated in varieties of sweet orange. 
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In the experiment that gave rise to the data analyzed, the diameter of the lesion provoked in the leaves 
was measured over time in 12 varieties of sweet orange. The adjustment of the observed data to the 
proposed model provided reliable results since the assumptions necessary for the validity of the model were 
satisfactorily met. The two Valencia varieties showed greater resistance to citrus canker, followed by the 
variety Perâ Irradiada. On the other hand, the variety Perâ Oriçanga proved to be less resistant to the 
disease, followed by the varieties Perâ Itapetininga and Precoce Oriçanga. Therefore, it can be said that this 
methodology was adequate to model the data, since it allowed the detection of the varieties more 
susceptible to citrus canker, which in experiments of this type, is the objective of the researcher. 

Conclusion  

Generalized linear mixed models are in increasing use for the analysis of longitudinal data, they have the 
ability to predict the individual trajectories of the object in question over time, in addition to the fact that 
the introduction of random effects to the model counts a lot to model the existing correlation in repeated 
measures. In general, both the log-normal and gamma models were adequate to describe the behavior of 
citrus canker in the evaluated sweet orange genotypes presents in the study. 
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