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21 Abstract

22 Standard area diagrams (SADs) are plant disease severity assessment aids demonstrated to 

23 improve the accuracy and reliability of visual estimates of severity. Knowledge of the sources of 

24 variation, including those specific to a lab such as raters, specific procedures followed including 

25 instruction, image analysis software, image viewing time, etc., that affect the outcome of 

26 development and validation of SADs can help improve standard operating practice of these 

27 assessment aids. As reproducibility has not previously been explored in development of SADs, 

28 we aimed to explore the overarching question of whether the lab in which the measurement and 

29 validation of a SADs was performed affected the outcome of the process. Two different labs 

30 (Lab 1 and Lab 2) measured severity on the individual diagrams in a SADs and validated them 

31 independently for severity of gray mold (caused by Botrytis cinerea) on Gerbera daisy. Severity 

32 measurements of the 30 test images were performed independently at the two labs as well. A 

33 different group of 18 raters at each lab assessed the test images first without, and secondly with 

34 SADs under independent instruction at both Lab 1 and 2. Results showed that actual severity on 

35 the SADs as measured at each lab varied by up to 5.18%. Furthermore, measurement of the test 

36 image actual values varied from 0 to up to 24.29%, depending on image. Whereas at Lab 1 an 

37 equivalence test indicated no significant improvement in any measure of agreement with use of 

38 the SADs, at Lab 2, scale shift, generalized bias and agreement were significantly improved with 

39 use of the SADs (P≤0.05). An analysis of variance indicated differences existed between labs, 

40 use of the SADs aid, and the interaction, depending on the agreement statistic. Based on an 

41 equivalence test, the inter-rater reliability was significantly (P≤0.05) improved at both Lab 1 and 

42 Lab 2 as a result of using SADs as an aid to severity estimation. Gain in measures of agreement 

43 and reliability tended to be greatest for the least able raters at both Lab 1 and Lab 2. Absolute 
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44 error was reduced at both labs when raters used SADs. The results confirm that SADs are a 

45 useful tool; but the results demonstrated that aspects of the development and validation process 

46 in different labs may affect the outcome.

47  

48 Key words: Reproducibility, disease evaluation, assessment, diagrammatic scales, Gerbera, 

49 Gerbera jamesonii, gray mold, Botrytis cinerea 

50

51

52 Gerbera (Gerbera jamesonii H. Bolus ex. Hooker), is an important nursery plant for both 

53 cut flower production and as a container-grown plant. It is among the three most important 

54 container-grown flowers produced in Brazil (Ferronato et al., 2008; Andrade, 2016) and is an 

55 important crop in the U.S.A. (Anonymous, 2009). Gerberas are most often cultivated under 

56 protected environments which provides a favorable place for development of many diseases 

57 (Brisco-McCann and Hausbeck, 2016). Among the diseases common on foliage of Gerbera is 

58 gray mold, caused by the fungus Botritys cinerea Pers. Although common on foliage causing 

59 spotting and blighting, Botrytis can also cause damping-off, crown rot and infection of flowers 

60 (Daughtery et al., 2000; Töfoli et al, 2011). Leaves develop gray-brown zonate lesions of 

61 variable size and shape; in some situations, the disease may cause drying and necrosis of leaf tips 

62 and edges. Flower petals show tan spots and tip necrosis or are entirely blighted. The disease 

63 may be seed borne (Daughtery et al., 2000). The infection reduces the profitability of gerbera 

64 production. Although endeavors are underway to develop Botritys-resistant gerbera (Fu et al., 

65 2015), this will take time and screening of progeny for disease resistance based on severity of 
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66 symptoms can be a requirement. 

67 Accuracy and reliability of visually acquired disease estimates are important for several 

68 aspects of plant pathology and related disciplines (Madden et al., 2007; Bock et al., 2016). 

69 Inaccurate individual estimates, and the resulting imprecision and unreliability can result in 

70 incorrect conclusions (Parker et al., 1995; Chiang et al., 2016a). Standard area diagrams (SADs, 

71 otherwise called diagrammatic scales) are important tools to aid in the accuracy and reliability of 

72 estimates of the severity of plant diseases (Bock et al., 2010; Del Ponte et al., 2017). SADs have 

73 been developed for over 100 pathosystems, and are habitually used in the field by many 

74 researchers as an aid to improve the accuracy and reliability of an individual’s disease severity 

75 estimates. Although SADs are well established, there remain many facets that have yet to be 

76 understood regarding their development, usage and benefit (Del Ponte et al., 2017). Very 

77 recently the first ‘best practices’ or standard operating procedures (SOPs) were developed for 

78 SADs, but these do not provide definitive detail regarding specific instructions, image analysis 

79 processing, number of images in a SADs, validation, rater selection, etc. (Del Ponte et al., 2017), 

80 partly because information is lacking on the impact of these factors. One aspect that has not been 

81 explored is whether the laboratory in which the development and validation of a SADs affects 

82 the overall outcome of the process. Sources of variation specific to a laboratory may include 

83 raters, SOPs used, image analysis software, viewing time for images, and amount or quality 

84 instruction provided to raters. Ideally, the recommended SOP for development and validation 

85 process should be sufficiently robust to prevent unwanted variability among labs. We aim to 

86 explore the overall effect of lab in which measurement and validation of a SADs is performed. 

87 Furthermore, development and validation of SADs that demonstrably improve accuracy 

88 and reliability of disease estimates is valuable as they become more widely available for use on 
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89 hand held devices for application in the field in real time (Pethybridge and Nelson, 2018). There 

90 are challenges to how these device-based SADs may be implemented (Del Ponte et al., 2019), 

91 but they need to be based on SADs that are effective at improving accuracy and reliability of 

92 estimates for the disease in question.   

93 As noted, SADs have been instrumental in improving accuracy and precision of disease 

94 severity assessments. Unfortunately, unaided severity estimates of individual diseased specimens 

95 are known to be subjective and variable among raters, with estimates deviating from the actual 

96 value to differing degrees (Nutter et al., 1993; Bock et al., 2010 and 2016). Thus, SADs are 

97 useful and fundamental tools to assist the evaluator and reduce subjectivity and error (Sposito et 

98 al., 2004; Barbosa et al., 2006; Barguil et al, 2008; Sussel et al., 2009; Lens et al, 2009; Mesquini 

99 et al, 2009; Spolti et al., 2011; Braido et al., 2014). Various considerations and stages in the 

100 development of a SADs include: a) the upper and lower limits of the scale, which should 

101 correspond, respectively, to the maximum and minimum intensity of the disease observed in the 

102 field (ensure an adequate sample); b) if diagrammatic (rather than photographic), the symptoms 

103 represented on the SADs should be sufficiently representative of those observed on living plants; 

104 c) the number of SADs should be appropriate for the range of severity and to reflect the 

105 frequency characteristics of the symptoms; d) measurements of disease severity on the SADs and 

106 the unknown test images should be as accurate as possible using image analysis or an alternative 

107 method; e) selection of sufficient numbers of test images for the validation process to represent 

108 the range and characteristics of the disease; f) clear instructions should be provided to the raters 

109 so they can recognize the symptoms, delineate the edges of diseased tissue, and be aware of how 

110 to estimate a percentage area (proportionally to represent the diseased part); g) ensure the 

111 conditions for assessments are consistent and constant; and h) use appropriate statistical analysis 
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112 to demonstrate if there is an effect of the SADs improving accuracy and precision. How these 

113 factors taken as a whole can vary when interpreted or applied in different studies is unknown. As 

114 noted above, a new SOPs exists (del Ponte et al., 2017), but the ramifications of how overall 

115 differences in the SOPs between labs in the SAD measurement and validation process have not 

116 been explored. Ideally, when two labs measure and validate a SADs, the results should be the 

117 same. 

118 The objectives of this study were i) to determine whether the interpretation and 

119 application of SOPs for SAD measurement and validation by two labs affects the overall 

120 outcome of the process, and ii) to develop and validate a SAD set as an assessment aid for the 

121 estimation of the severity of gray mold symptoms on leaves of gerbera. 

122

123 MATERIALS AND METHODS

124 Laboratories.  The studies were conducted at the Departamento de Agronomia, 

125 Universidade Estadual de Maringá (Paraná State, Brazil), designated Lab 1, and at the USDA–

126 ARS-SEFTNRL (Byron, GA, USA), designated Lab 2. As outlined below all preliminary aspects 

127 of the study were prepared at Lab 1. 

128 Inoculation of plants and collection of leaves. Gerbera daisy plants (cultivar Revolution 

129 Yellow DC, Ball Seeds, Toledo, Paraná State, Brazil) were grown in a compost of pine bark, 

130 vermiculite and macro nutrients (MecPlant Agricola, Telemaco Borba, Paraná State, Brazil) in 

131 containers under greenhouse conditions with mean temperature of ~27°C, natural photoperiod, 

132 and daily watering. The plants were inoculated with a suspension of Botrytis conidia prepared 

133 from cultures in Petri dishes (90 × 15 mm) grown on potato dextrose agar at 23°C with a 12-hour 
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134 photoperiod. Conidia were collected by flooding the culture with sterile distilled water and 

135 scraping the surface using a glass bar. The conidia concentration was adjusted to 2 × 105 per mL 

136 using a hemocytometer. The plants were inoculated when they were 37 days old using the 

137 suspension of Botrytis conidia. Inoculation was by hand held sprayer (Pulverizador Sanremo 

138 Boulevard 580 mL, Sanremo, Esteio, Rio Grande do Sol, Brazil), the inoculum sprayed on the 

139 leaves to run-off. After inoculation, plants were placed in a humid chamber and held at 90-100% 

140 relative humidity for 48 hours. Spray inoculation, as opposed to wounding, was used to emulate 

141 natural infection. Plants were returned to the greenhouse, where disease developed under 

142 conditions already noted. When plants were 60 days old and 23 days after inoculation, 126 

143 leaves with symptoms of Botrytis infection were arbitrarily collected.

144 The leaves had a range of severity and were photographed individually against a blue 

145 background immediately after collection using a digital camera (Sony CyberShot 5.1MP, Tokyo, 

146 Japan). For image capture the leaves were illuminated using a 40-W light bulb (Fluorescent 

147 Lights, Taschibra 6400K, Encano do Norte, Santa Catarina, Brazil) placed 30 cm over the leaves 

148 using a support – images were captured from the same distance overhead to ensure uniform light 

149 conditions. All images were captured at Lab 1.

150 Image analysis. A trained individual measured the severity of Botrytis on all 126 leaves 

151 at Lab 1 using the image analysis program Quant V1.0.2 (Vale et al., 2001). The percentage 

152 diseased area in relation to the total surface area of the leaf was calculated. The minimum and 

153 maximum percent severity measured on the 126 images of the leaves were 0.2 and 68.0%, 

154 respectively (Fig. 1). The majority of leaves (69%) had severity <20%, demonstrating the need to 

155 focus the diagrams at severities of <20%. 

156 Selection of images and measurement of disease on SADs. We specifically wanted to 
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157 compare laboratories holistically and account for any differences that might occur due to the 

158 entirety of different approaches taken by independent groups subsequent to sample collection 

159 and identification of specimen leaves for use as SADs. Thus, using a selected sub-sample of 6 

160 leaves representing the range of severity in the greenhouse, a common set of SADs were 

161 prepared at Lab 1 based on the results from the image analysis of all 126 leaves collected. The 

162 leaves were recolored in Quant V1.0.2 to generate a color SAD set with brown (diseased area) 

163 and green (healthy area). Thus, the SAD set was structured to have six diagrams of leaves with 

164 upper and lower limits based on the image analysis-measured minimum and maximum disease 

165 severity in the sample of 126 leaves as noted in the previous section, and was performed at Lab 

166 1.

167 Once generated, the resulting six images of the SADs were subject to independent image 

168 analysis by a test administrator to measure the diseased area in each leaf diagram using Quant 

169 V1.0.2 at Lab 1, and using APS Assess V2.0 (Lamari, 2002) at Lab 2. As noted above, the same 

170 SAD set was used at both labs to maintain a common starting point, but independent 

171 measurements and approaches taken thereafter to explore the effect of lab on the downstream 

172 process of SAD development and validation. 

173 Validation of the SADs. To maintain common images for testing in the two labs, a 

174 subset of 30 images from the remaining 120 images on which actual severity had been measured 

175 by image analysis were selected at Lab 1 for the rater-validation process (leaves with measured 

176 actual values are required for validation). A sample size of 30 is deemed adequate for mean 

177 disease severity estimation based on prior studies if taking two estimates per specimen (Chiang 

178 et al., 2016b); here we were taking 18 estimates per specimen at each Lab. These 30 images had 

179 been independently subject to image analysis by the test administrator at Lab 1 (using Quant 
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180 V1.0.2), and were again subject to image analysis by the test administrator at Lab 2 where the 

181 diseased area was measured using APS Assess V2.0. The subsequent approach to validate the 

182 SADs was intentionally independently selected in each lab. Thus in Lab 1, 18 raters were 

183 instructed to estimate the severity of gray mold symptoms on each of the selected subset of 30 

184 images of the diseased leaves using a MS PowerPoint (Microsoft Inc., Redmond, WA) slide 

185 presentation, projecting each leaf image at random on a screen using an LCD Epson projector 

186 (Model H855A, Seiko Epson Corp., Japan) with evaluation programmed to last 30 seconds per 

187 image. The raters had a range of experience with disease assessment and familiarity with disease 

188 symptoms. At Lab 1, prior to the first assessment, all raters received the same instructions 

189 describing the symptoms of the disease and instructions in use of the SAD set. Initially, each 

190 rater estimated the severity of gray mold symptoms without the aid of the SAD set. After a 30-

191 min break, each rater again estimated the severity of symptoms on the same 30 leaves, again 

192 shown at random but with the aid of the 6-diagram SAD set to guide estimation. In Lab 2, 18 

193 raters were independently but similarly instructed to estimate the severity of gray mold 

194 symptoms on each of the selected subset of 30 images of the diseased leaves, but using 

195 approximately life-sized images of the leaves on sheets of paper that were randomized (1 per 

196 sheet). No time limit was imposed at Lab 2. Similar to Lab 1, the raters had a range of experience 

197 with disease assessment and familiarity with disease symptoms. As for Lab 1, all raters in Lab 2 

198 received the same instructions describing the symptoms of the disease and instructions in use of 

199 the SAD set. Initially each rater estimated the severity of gray mold symptoms without the aid of 

200 the SAD set. After up to a two-week break (minimum 1 day), each rater again estimated the 

201 severity of symptoms on the same 30 leaves which were randomized again, but using the six-

202 diagram SAD set as an assessment aid.
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203 Data analysis. The visual estimates of severity of gray mold symptoms on the 30 leaves 

204 without and with SADs at Lab 1 and Lab 2 were compared to the actual values measured by 

205 image analysis from each Lab 1 and Lab 2, respectively. Lin’s concordance correlation (LCC, 

206 Lin, 1989; Nita et al., 2003) analysis was used to evaluate the degree to which the estimates fell 

207 on the line of concordance (45°, where slope =1, intercept =0). When there is perfect 

208 concordance between the estimates and the true values, then the LCC statistics of systematic 

209 bias, υ = 1, constant bias, μ = 0, overall bias or accuracy, Cb = 1, precision, r = 1, and agreement, 

210 ρc = 1. Deviation from these values indicates bias, loss of precision and loss of agreement. 

211 Analyses were performed in MS Excel following the standard calculations for calculating the 

212 LCC statistics (Lin, 1989). The difference in each of these statistics when estimated without 

213 using SADs and using SADs was calculated for each rater. An equivalence test (Yi et al., 2008; 

214 Yadav et al., 2013; Bardsley and Ngugi, 2013) was used to calculate 95% confidence intervals 

215 (CIs) for the difference between the means for υ, μ, Cb, r, ρc by 1000 balanced bootstrap samples 

216 using the percentile method. The equivalence test assumes groups are different, and was 

217 performed independently for each statistic from each lab. If the resulting CIs span zero, there is 

218 no significant difference between the means. The equivalence test was performed using SAS 

219 V9.4 using PROC SURVEYSELECT and PROC UNIVARIATE (SAS Institute Cary, NC).

220 In addition to the equivalence test, an analysis of variance (ANOVA) using a generalized 

221 linear model (PROC GLIMMIX) was performed to explore fixed effects of SADs and Lab, and 

222 the SADs × Lab interaction on each of the dependent variables for υ, μ, Cb, r and ρc. In contrast 

223 to the equivalence test, an ANOVA tests the null hypothesis (H0) that there is no difference 

224 between groups. A Tukey’s means separation was performed to compare the means for the two 

225 fixed effects and the interaction (α = 0.05). 
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226 The inter-rater reliability with and without SADs at each lab was measured using two 

227 methods. Firstly, the coefficient of determination (R2) for each pairwise combination of rater-

228 based estimates without or with SADs was calculated for the data at each lab. The R2 reflects the 

229 proportion of variation explained by the linear relationship (PROC REG), and indicates how 

230 closely one measurement predicts the other. The R2 was calculated for all pairwise combinations 

231 in each lab with and without SADs using SAS V9.4. The within lab SAD effect on the R2 was 

232 explored using an equivalence test. The R2 was also subject to a GLIMMIX analysis as described 

233 in the previous paragraph. Secondly, the intra-class correlation coefficient (ICC, ρ) was 

234 determined for estimates by raters at each lab with and without SADs. The ICC compares 

235 between-subject and within-subject variance and thus accounts for chance correspondence of the 

236 variance between the two measurements. The ICC and its confidence limits were calculated step 

237 by step in MS Excel using a two-way ANOVA as described by Nita et al. (2003). The 95% CIs 

238 were calculated. 

239 The relationship between the change in rater ability based on all LCC statistics (υ, μ, Cb, 

240 r, ρc) and inter-rater reliability (R2) for estimates made without SADs and those made using the 

241 SADs (with SADs assessment – No SADs assessment) was regressed against the assessment 

242 statistics without SADs. Because υ and μ are centered on 1 and 0, respectively, we standardized 

243 the values by transforming υ using 1- υ, while μ was converted to absolute values prior to 

244 calculating the mean difference between assessments. Linear regression analysis was performed 

245 to examine the relationship between the change in the statistics without and with SADs, and the 

246 statistic (υ, μ, Cb, r, ρc or R2) without SADs. The regression solution was assessed using the F 

247 and P values for the model (significant if P<0.05), the R2, and the coefficient of variation (CV), a 

248 unit-less measure of variation, calculated as [(Mean Square Error/Mean) × 100]. Regression was 
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249 also used to explore the relationships between measurements of the actual values by Lab 1 and 

250 Lab 2. 

251 Finally, absolute error (the visual estimate made with or without SADs – actual disease 

252 severity) was calculated for all estimates.

253

254 RESULTS

255 Actual values. The SADs consisted of six images (Fig. 2). The measurements of actual 

256 values on the SAD images varied between the two labs. The differences were not large, ranging 

257 from 0.2 to 5.18%. The measurements of the SADs diseased areas at Lab 1 were consistently 

258 lower compared to those at Lab 2. The actual values measured on the 30 ‘unknown’ images for 

259 the tests at Lab 1 and Lab 2 also differed (Fig. 3). The relationship indicated moderate to strong 

260 agreement (R2 = 0.88). Only one image had an identical measurement. The differences in 

261 measured diseased area ranged from 0.22 to 24.29%. Of the thirty measurements at each lab, 18 

262 at Lab 1 had a lower measurement.

263 Bias, precision and agreement. Each of the 36 raters from the two labs showed a unique 

264 profile when estimating severity without or with SADs. Despite instructions, one rater from Lab 

265 1 used the SADs as categories into which the unknowns were binned (data not shown). Based on 

266 the test of equivalence, the two labs differed: when the SADs were used by raters at Lab 1, they 

267 failed to significantly improve any measure of bias (systematic bias, constant bias or generalized 

268 bias), precision or agreement (Table 1). There was no significant effect on location bias, 

269 systematic bias, generalized bias, precision or agreement. Overall, the tendency to underestimate 

270 severity of Botrytis of leaves of Gerbera daisy was greater with SADs. In contrast, the raters at 
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271 Lab 2 showed significant reductions in systematic bias, generalized bias, and agreement, but not 

272 in constant bias and precision. The mean % change in accuracy of the overall mean estimate of 

273 severity also confirmed these trends: the actual mean severity of gray mold on the 30 leaves 

274 measured at Lab 1 was 19.43%; without SADs the mean rater estimated severity was 18.69% 

275 (underestimate of 0.75%), and with SADs it was 15.47% (underestimate of 3.97%). In contrast, 

276 the actual mean severity of gray mold on the 30 leaves measured at Lab 2 was 20.49%; without 

277 SADs the mean rater estimated severity was 27.08% (overestimate of 6.59%), and with SADs it 

278 was 20.17% (underestimate of 0.32%).

279 Raters varied in their responses to using SADs. The diversity of rater response to SADs 

280 can be ascertained from the gain or loss for each of the statistics defining bias, precision and 

281 agreement (Fig. 4A-E). For all statistics (υ, μ, Cb, r, and ρc) there were individual raters who 

282 responded in unexpected and in extreme ways and as a result are outliers in gain or loss. The 

283 phenomenon was true for both Lab 1 and Lab 2. There are outliers among these data, which were 

284 included in the analysis. Despite these outliers, the trends for most raters are clear and consistent 

285 in these figures. The majority of rater’s response to the use of SADs was for small to large gains 

286 in each statistic, with similar trends. The extreme rater exceptions caused the regression to 

287 behave contrary to the trend in the majority of data points for both systematic bias (Fig. 4A) and 

288 constant bias (Fig. 4B), particularly for data from Lab 1. For the majority of raters for each 

289 statistic the response confirms that less accurate and less precise raters tended to improve the 

290 most when using SADs (Table 2).

291 The analysis of variance revealed effects of Lab and SADs on the LCC statistics (Table 

292 3). Thus there were significant effects of Lab only for constant bias (F=6.2, P=0.02), with raters 

293 from Lab 2 being slightly less biased on average. Overall, there were significant effect of SADs 
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294 for generalized bias (F=5.8, P=0.02), and agreement (F=6.9, P=0.01). Overall, SADs resulted in 

295 less biased estimates that had greater agreement with the actual values. There was no significant 

296 interaction effect for any of the LCC statistics. 

297 Inter-rater reliability. Whereas Lab had no discernible effect (Table 3), use of SADs 

298 significantly improved inter-rater reliability (F=33.6, P<0.0001). There was a significant Lab × 

299 SADs interaction (F=3.9, P=0.05) with both labs showing an improvement in inter-rater 

300 reliability with use of SADs although the improvement when using SADs was greater for Lab 1. 

301 These results were borne out by the test of equivalence using all pairwise coefficients of 

302 determination for the raters (Table 4). Use of the SADs resulted in improvement in inter-rater 

303 reliability by raters at Lab 1 and Lab 2. This was mirrored in improvements in the intra-class 

304 correlation coefficient at both labs. It should be noted that the confidence intervals for the ICC 

305 do not represent differences between the means based on a hypothesis test, but represent the 

306 confidence intervals of each population (no SADs and SADs for each lab).  

307 The overall frequency of the levels of the coefficients of determination for the two labs 

308 with and without SADs indicates that the raters at Lab 2 tended to have slightly higher inter-rater 

309 reliability values with and without SADs (Fig. 5A). The gain or loss of inter-rater reliability 

310 showed that most pairwise comparisons of raters showed improved inter-rater reliability with use 

311 of SADs at both Lab 1 and Lab 2. However, as with agreement statistics, there were raters at 

312 both Labs who did not show typical gains in inter-rater reliability  (Fig. 5B; Table 2). 

313 Absolute error. Raters at Lab 1 tended to underestimate disease when not using SADs, 

314 but at Lab 2 the tendency was for raters to overestimate disease, particularly at low disease 

315 severities (<40%) (Fig. 6). Using SADs reduced the absolute error of raters at both labs. 

316 Estimates of zero (or almost zero) disease acted as a barrier to more extreme underestimates at 
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317 both labs, but even with SADs individual disease severities were underestimated up to 60.0% 

318 and overestimated up to 40.0% at Lab 1, and underestimated up to 42.5% and overestimated up 

319 to 64.0 % at Lab 1, respectively.

320

321 Discussion

322 The results of our study demonstrate that the SAD experiments are not necessarily 

323 reproducible among different laboratories, even when the same SADs and test images are used 

324 for disease assessment. Although this study did not explore the reasons for the lack of 

325 reproducibility between labs, it forms the basis for exploring sources of variation in future 

326 studies. Our study was observational in that we observed the effect of independently developed 

327 SAD measurement and validation processes on the outcome of using SADs. Thus, our study 

328 relates directly to an ongoing discussion about reproducibility of research in science in general 

329 (Baker, 2016) and specifically within the microbiology and plant pathology community (Schloss, 

330 2018; https://openplantpathology.org/tags/reproducibility/).  

331 Different approaches have been used to develop and validate SADs (del Ponte et al., 

332 2017). The image analysis process of measuring diseased area on the SADs and on the test 

333 images is a potential source of some error. Image analysis systems may rely on different 

334 algorithms and is inevitably prone to error as two individuals may not delineate the disease the 

335 same way; thus pixels may be included in the healthy or diseased grouping depending at what 

336 point in the color grade the differentiation is made by the individual performing the 

337 measurement. Indeed, due to these subjectivities even the same individual measuring actual 

338 severity using image analysis may have different results performing the measurement a second 

339 time (Bock et al., 2008). Accurate segmentation of diseased areas is more challenging for 
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340 symptom with unclear boundaries, perhaps with a gradation of chlorosis from necrotic to 

341 healthy. Symptoms of gray mold on gerbera has these characteristics that may lend themselves to 

342 error due to subjectivity of delineation. No formal analysis has yet been done to determine 

343 whether symptoms with poorly defined boundaries are more difficult to estimate severity 

344 accurately. But SADs do exist for diseases where chlorosis or other factors make symptom 

345 delineation a little more challenging (Spolti et al., 2011; Correa et al., 2017; Domiciano et al., 

346 2014), and for those diseases with relatively clear-cut symptoms (Lima et al., 2011; Schwanck 

347 and Del Ponte, 2014; González-Domínguez et al., 2014). Thus, the agreement (ρc) with and 

348 without SADs for estimates of severity of Phomopsis leaf blight of eggplant that has variable 

349 chlorosis associated with lesions (similar to Botrytis on Gerbera) was 0.73 and 0.92, respectively 

350 (Correa et al., 2017), while a pathosystem with a very clear-cut symptom like brown spot of rice 

351 was 0.53 and 0.87, respectively (Schwanck and Del Ponte, 2014). Thus, symptoms that are 

352 poorly defined do not necessarily preclude a significant improvement and accuracy of estimation 

353 at least equivalent to those with more clearly defined symptoms. Much research remains to be 

354 done to understand these factors in SAD development and validation.  

355 In Lab 1 the images were presented as a MS PowerPoint presentation with timed, 30 sec 

356 viewings for rater estimation, while in Lab 2, the images were printed on paper and there was no 

357 time limit for the rater to estimate severity. The raters selected can also impact the overall 

358 outcome of the study. Raters are diverse in ability (Bock et al., 2009) and, although a minimum 

359 of 15 raters is recommended (del Ponte et al., 2017), the characteristics of the raters will likely 

360 impact the outcome of the study too. Raters in both labs showed a wide range of capability and 

361 response to SADs. Also, instruction provided to raters, regardless of expertise, is critical (Ngugi 

362 and Bardsley, 2013) and how instruction is provided by a test administrator can vary between 
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363 labs. It is important to ensure that raters know how to recognize symptoms of the disease, and 

364 how to delineate healthy tissue from the diseased tissue. Raters need to understand the concept 

365 and process of estimating a proportion based on the continuous percentage ratio scale. 

366 Furthermore, raters must clearly understand the SADs are an aid to help with the process of 

367 estimation by interpolation, and are not to be used as categories into which the disease estimates 

368 are binned. One rater in Lab 1 appeared not to understand this point. Del Ponte et al. (2017) 

369 provided a list of SOPs for SADs. It may be that the SOPs should be amended to further refine 

370 and standardize SAD approaches. However, before additions to the SOPs are proposed, research 

371 must be conducted to identify methods that result in accurate, and highly reproducible disease 

372 assessment data.  . 

373 We used a robust number of raters (18 at each lab) and unknown images (30), yet in Lab 

374 1 there was only some numeric evidence of improvements in accuracy, agreement or precision of 

375 rater estimates, while in Lab 2, there was a significant improvement in accuracy and agreement 

376 of the estimates when using SADs. Both labs demonstrated significant gains in inter-rater 

377 reliability when using the SADs, confirming that the SADs increased the uniformity of rater 

378 estimates, in of itself a very valuable improvement where multiple raters might be assessing 

379 disease on different samples in a study. Interestingly, there was no significant difference in the 

380 precision of estimates between the two labs, although both did show numeric improvements. The 

381 results indicating improvements in agreement and reliability reflect those reported for many 

382 other SADs (Sposito et al., 2004; Barbosa et al., 2006; Barguil et al, 2008; Sussel et al., 2009; 

383 Lens et al, 2009; Mesquini et al, 2009; Spolti et al., 2011; Braido et al., 2014). Why the tendency 

384 of raters in Lab 1 was to underestimate disease severity, and those in Lab 2 to overestimate 

385 disease severity is not understood. Use of SADs generally reduced the tendency to overestimate. 
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386 Bias is an important source of error in disease severity estimation and can affect the outcome of 

387 hypothesis testing (Chiang et al., 2016a), so it is important to understand and minimize. Raters 

388 from different areas may have small, inherent differences in characteristics of estimation. 

389 Although not considered here, differences in individuals’ personality types might also affect the 

390 accuracy of estimates. 

391 Overall our study reaffirms that the use of SADs is a useful method to improve accuracy 

392 and reliability of disease assessment by at least some raters – although most often the gain in a 

393 particular statistic as a result of using SADs is greatest for those least capable raters. We 

394 observed this phenomenon in the current study, as has been observed and commented on 

395 previously (Yadav et al., 2013; Braido et al., 2014). Thus, it would be advantageous to use these 

396 newly developed SADs in future studies where more accurate and reliable estimates of severity 

397 of Botrytis on Gerbera are sought. Furthermore, these SADs to aid estimation of severity of 

398 symptoms of gray mold on leaves of Gerbera has additional utility too. It may also be useful for 

399 other diseases of Gerbera with similar symptoms. A recently described disease of Gerbera in 

400 Brazil is caused by Pseudomonas cichorii (Marques et al., 2016) and has symptoms that are 

401 reminiscent of gray mold infection. The SADs described here may be useful as an aid to estimate 

402 severity of symptoms caused by P. cichorii. 

403 To conclude, this study provides evidence that labs may vary in the outcome of the SAD 

404 development and validation process; in one lab they may result in statistically different 

405 improvements in measures of accuracy, yet not in another. This is useful to know. In this case 

406 both showed a significant increase in reliability using the SADs. Various factors in the process of 

407 SAD development and validation may affect outcome including components unrelated to the 

408 raters involved in the test, who themselves are a source of potential discrepancy. However, given 
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409 suitable sample size, a test to ascertain SADs utility should provide the same outcome regardless 

410 of lab. These results suggest that we need more rigorous SOPs for developing and using SADs. 

411
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1

1

2 Table 1. Mean concordance statistics (Lin’s concordance correlation, LCC - bias, precision and 
3 agreement) with bootstrap analysis of the differences between means for two groups (Lab 1 and 
4 Lab 2) of 18 raters estimates of severity of symptoms of gray mold on a set of 30 images of 
5 leaves of Gerbera jamesonii without and with a standard area diagram set (SADs) assessment 
6 aid. 
7

Lab Mean LCC 
statistic No 

SAD
SAD 
set

Mean diffa 95% CIsb 
(upper and 
lower)

1 υc 0.948 0.926 0.048 -0.033 to 0.158h 
µd -0.264 -0.370 0.096 -0.117 to 0.389
Cb

e 0.856 0.891 0.037 -0.038 to 0.139
rf 0.825 0.857 0.032 -0.006 to 0.080
ρc

g 0.736 0.787 0.052 -0.015 to 0.143

2 υc 1.138 1.052 0.092 0.008 to 0.186
µd 0.288 0.022 0.096 -0.117 to 0.389
Cb

e 0.860 0.967 0.107 0.046 to 0.175
rf 0.853 0.861 0.008 -0.048 to 0.060
ρc

g 0.744 0.833 0.089 0.033 to 0.154

8 aMean of the difference between each rating.
9 bConfidence intervals (CIs) were based on 1000 bootstrap samples. If the CIs embrace zero, the 

10 difference is not significant (α = 0.05).
11 cSystematic bias, or scale shift (υ, 1 = no bias relative to the concordance line).
12 dConstant bias, or height shift (μ, 0 = no bias relative to the concordance line).
13 eGeneralized bias (Cb) measures how far the best-fit line deviates from the line of concordance. 
14 fThe correlation coefficient (r) measures precision.
15 gLin’s Concordance Correlation Coefficient (ρc) combines both measures of precision (r) and 
16 accuracy (Cb) to measure the degree of agreement with the true value.
17 hBold text indicates a significant difference.
18
19

Page 23 of 34



1

1

2 Table 2. The regression solutions for the relationship between bias, precision, agreement and 
3 inter-rater reliability without the use of standard area diagrams (SADs) and the difference (no 
4 SADs – SADs) for the two groups (Lab 1 and Lab 2) of 18 raters estimating severity of 
5 symptoms of gray mold on a set of 30 images of leaves of Gerbera jamesonii. See Fig. 4.  
6  

LCC 
statistic

Lab Intercept Slope F-value 
(P-value)

CVa R2b

υc Lab 1 0.19 -0.15 1.1 (0.3) 470.4 0.07
Lab 2 -0.53 0.55 18.0 (0.0006) 156.0 0.53

µd Lab 1 0.01 -0.30 5.6 (0.03) 560.3 0.26
Lab 2 0.11 0.60 51.1 (<0.0001) 65.5 0.76

Cb
e Lab 1 0.46 -0.49 14.1 (0.002) 427.6 0.47

Lab 2 0.94 -1.00 458.5 (<0.0001) 26.6 0.97

rf Lab 1 0.26 -0.28 3.0 (0.1) 276.3 0.16
Lab 2 0.29 -0.33 1.4 (0.3) 1426.5 0.08

ρc
g Lab 1 0.38 -0.44 10.2 (0.006) 288.0 0.39

Lab 2 0.45 -0.49 16.1 (0.001) 111.1 0.50

R2 Lab 1 0.28 -0.32 33.9 (<0.0001) 173.0 0.18
Lab 2 0.34 -0.47 24.9 (<0.0001) 481.6 0.14

7 aThe coefficient of variation (CV) is a unit-less measure of variation, and is calculated as [(Mean 
8 Square Error/Mean) x 100].
9 bThe coefficient of determination (R2) is the proportion of the variation explained by the 

10 association between two sets of measurements.
11 cSystematic bias (scale or slope shift, υ, 1 = no bias relative to the concordance line) can be less 
12 than or greater than 1 so it was necessary to obtain standardized (as 1-υ) absolute data prior to 
13 calculating the mean difference.
14 dConstant bias (location or height shift,  μ, 0 = no bias relative to the concordance line) can be 
15 less than or greater than 0, so it was necessary to obtain absolute data prior to calculating the 
16 mean difference.
17 eGeneralized bias (Cb) measures how far the best-fit line deviates from 45° and is thus a measure 
18 of accuracy.
19 fThe correlation coefficient (r) measures precision.
20 gLin’s Concordance Correlation Coefficient (ρc) combines both measures of precision (r) and 
21 accuracy (Cb) to measure the degree of agreement with the true value.
22
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1

1 Table 3. General linear mixed model analysis and lsmeans separation of measures of accuracy, 
2 precision and agreement for two groups (Lab 1 and Lab 2) of 18 raters estimates of severity of 
3 symptoms of gray mold on a set of 30 images of leaves of Gerbera jamesonii without and with a 
4 standard area diagram set (SADs) assessment aid. For each statitic, numbers in comparison 
5 groups (‘Lab’, ‘SADs’ and ‘Interaction (Lab × SADs)’) followed by different letters are 
6 significantly different (Tukey’s HSD, α = 0.05).

7

Statistic Main effects Interaction (Lab × SADs)
Lab SADs Lab 1 Lab 2
1 2 No 

SADs
SADs No SADs SADs No 

SADs
SADs

υa 0.937 a 1.095 a 1.043 a 0.989 a 0.948 a 0.926 a 1.138 a 1.052 a
F (P)g 3.9 (0.06) 1.7 (0.2) 0.6 (0.4)

µb -0.317 b 0.155 a 0.012 a -0.174 a -0.264 ab -0.370 b 0.288 a 0.022 ab
F (P) 6.2 (0.02) 3.8 (0.06) 0.7 (0.4)

Cb
c 0.874 a 0.914 a 0.858 b 0.929 a 0.856 a 0.891 a 0.861 a 0.967 a
F (P) 0.5 (0.5) 5.8 (0.02) 1.5 (0.2)

rd 0.841 a 0.857 a 0.839 a 0.859 a 0.825 a 0.857 a 0.853 a 0.861 a
F (P) 0.2 (0.7) 1.2 (0.3) 0.4 (0.5)

ρc
e 0.762 a 0.789 a 0.740 b 0.810 a 0.736 a 0.787 a 0.744 a 0.833 a

F (P) 0.2 (0.7) 6.9 (0.01) 0.5 (0.5)

R2f 0.622 a 0.661 a 0.608 b 0.675 a 0.577 c 0.667 ab 0.639 bc 0.683 a
F (P) 3.2 (0.07) 33.6 (<0.0001) 3.9 (0.05)

8 aSystematic bias (υ, 1 = no bias relative to the concordance line).
9 bConstant bias (μ, 0 = no bias relative to the concordance line).

10 cGeneralized bias (Cb) measures how far the best-fit line deviates from 45°  (Madden et al., 
11 2007).
12 dThe correlation coefficient (r) measures precision.
13 eLin’s Concordance Correlation Coefficient (ρc) combines both measures of precision (r) and 
14 generalized bias (Cb) to measure accuracy.
15 fR2= the coefficient of determination, is a quantitative measure of inter-rater reliability - the 
16 degree to which the X-data explain the Y-data.  
17 gF-value and P-values indicate a significant effect where P<0.05.
18
19
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1

1 Table 4. The inter-rater reliability for two groups (Lab 1 and Lab 2) of 18 raters estimating 
2 severity of symptoms of gray mold on a set of 30 images of leaves of Gerbera jamesonii without 
3 and with a standard area diagram set (SADs) assessment aid. Inter-rater reliability was measured 
4 using either the coefficient of determination (R2)a or the intra-correlation coefficient (ρ)b. 
5
6

Lab Statistic Value Mean 
diffc

95% CIs Variable 

1 No SADs 0.578 0.089Coefficient of 
determination  (R2) SADs 0.667

0.062 to 0.116d

No SADs 0.575 0.155 0.451 to 0.705Intra-class correlation 
coefficient (ICC, ρ) SADs 0.730 0.620 to 0.825

2 No SADs 0.639 0.043 0.009 to 0.079Coefficient of 
determination  (R2) SADs 0.683

No SADs 0.575 0.182 0.452 to 0.706Intra-class correlation 
coefficient (ICC, ρ) SADs 0.757 0.651 to 0.844

7 aThe coefficient of determination (R2) is the proportion of the variation explained by the 
8 association between two sets of measurements.
9 bThe ICC (ρ) compares the between-subject variance with the within-subject variance and is the 

10 relative amount of variation from the combined mean of the two test sessions explained by 
11 differences between the subjects. 
12 cMean of the difference between each rating (i.e., without and with SADs). 
13 d bConfidence intervals (CIs) were based on 1000 bootstrap samples. If the CIs embrace zero, the 
14 difference is not significant (α = 0.05). Bold text indicates a significant difference.
15 eThe intra-class correlation coefficient and confidence intervals (CIs) were calculated in MS 
16 Excel©.
17
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1

2 Fig. 1. The frequency of severity (percentage area diseased) of symptoms caused by infection 
3 with Botrytis cinerea on 126 diseased leaves of Gerbera jamesonii. Severity measured using 
4 image analysis program Quant V1.0.2 (Vale et al., 2001).
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1

1 Fig. 2. Standard area diagrams developed and independently measured for diseased area using 
2 image analysis by two the administrator of the test for two groups at Lab 1 and Lab 2, 
3 respectively.  The test groups comprised 18 raters who estimated severity of symptoms of 
4 Botrytis cinerea on a set of 30 images of leaves of Gerbera jamesonii without and with a 
5 standard area diagram set (SADs).
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1

2 Fig. 3. The relationship between measurements of actual values of severity of symptoms of 
3 Botrytis cinerea on a set of 30 images of leaves of Gerbera jamesonii as made by two 
4 administrators of two test groups (Lab 1 and Lab 2) of 18 raters who estimated the severity on 
5 the images without and with the use of a standard area diagram set. Solid line is the line of 
6 concordance; dashed line is the line fit to the data (regression solution: Lab 2 = Lab 1*1.096 -
7 0.819 [F=197.7 (P<0.0001), R2 = 0.88]).
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Plant Disease, Vilma Pereira de Melo et al.  1

1 Fig. 4. The relationship between bias, precision and agreement without the use of standard area diagrams (SADs) assessment aides 
2 and the difference (+SADs – no SADs) demonstrating raters with the least good scores most often benefitted the most for all variables. 
3 A) Systematic bias, B) Constant bias, C) Generalized bias, D) Correlation coefficient, and E) Lin’s concordance correlation 
4 coefficient. Disease was assessed on a set of thirty images of symptoms of Botrytis cinerea on leaves of Gerbera jamesonii by 18 
5 raters in two different labs (Lab 1 and Lab 2). Solid line is fitted to data from Lab 1, the dashed line to data from Lab 2. Raters above 
6 the horizontal dotted line improved in score relative to the first rating; below the dotted line, raters ability declined compared to the 
7 first rating. Regression solutions are presented in Table 2. 
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1 Fig. 5. The A) frequency of the inter-rater reliability of two groups of 18 raters in different labs 
2 (Lab 1 and Lab 2) who assessed thirty images of leaves of Gerbera jamesonii with symptoms of 
3 Botrytis cinerea measured by the coefficient of determination (R2) without and with use of a 
4 standard area diagram set (SAD), and B) relationship between the gain or loss in inter-rater 
5 reliability by the two groups when using the standard area diagrams (SADs, the difference 
6 (+SADs – no SADs)). Raters above the horizontal dashed line improved in score relative to the 
7 first rating; below the dashed line, raters ability declined compared to the first rating.
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1

1

2 Fig. 6. The absolute error (estimate minus true disease) of estimates of severity of symptoms of 
3 Botrytis cinerea on 30 images of leaves of Gerbera jamesoni by two groups (Lab 1 and Lab 2) of 
4 18 raters without use of standard area diagram sets (No SADs) as assessment aides (A, B), or 
5 using a SADs (C, D). 
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